THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010 I/J University Mathematics 2015-2016 Assignment 1

1. Find the following limits.

(a)
$$\lim_{n \to \infty} n \left(\sqrt{1 + \frac{1}{n}} - \sqrt{1 - \frac{1}{n}} \right)$$

(b)
$$\lim_{n \to \infty} \frac{n \sin(e^n)}{n^2 + 3}$$

2. (a) If $\frac{x+4}{x^2+3x+2} \equiv \frac{A}{x+2} + \frac{B}{x+1}$ for some real numbers A and B, find the values of A and B.

(b) By using the result in (a), find
$$\sum_{k=2}^{\infty} \left(\frac{1}{k-1} - \frac{k+4}{k^2+3k+2} \right)$$

(i.e. $\lim_{n \to \infty} \sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{k+4}{k^2+3k+2} \right)$)

3. By using the sandwich theorem, prove that

$$\lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(2n)^2} \right) = 0.$$

4. Let a and b be two positive real numbers and let $\{x_n\}$ be a sequence of positive real numbers such that

$$0 < x_1 < b$$
 and $x_{n+1} = \sqrt{\frac{ab^2 + x_n^2}{a+1}}$ for $n \ge 1$.

- (a) Prove that $\{x_n\}$ is monotonic increasing.
- (b) Prove that $\{x_n\}$ converges (i.e. $\lim_{n\to\infty} x_n$ exists) and hence find its limit.
- 5. Let $\{x_n\}$ and $\{y_n\}$ be sequences of positive real numbers such that $0 < y_1 \le x_1$ and for $n = 1, 2, 3, \cdots$

$$x_{n+1} = \frac{x_n + y_n}{2}$$
 and $y_{n+1} = \frac{2x_n y_n}{x_n + y_n}$

- (a) Show that $x_n \ge y_n$ for all natural numbers n.
- (b) Prove that $\{x_n\}$ is a monotonic decreasing sequence and $\{y_n\}$ is a monotonic increasing sequence.
- (c) Prove that $\{x_n\}$ and $\{y_n\}$ converge and $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n$.
- (d) Prove that $x_n y_n$ is a constant and hence find $\lim_{n \to \infty} x_n$.

6. Let $\{a_n\}$ be a sequence of real numbers defined by $a_n = \left(1 + \frac{1}{n}\right)^n$ for $n = 1, 2, 3, \cdots$.

(a) By using the binomial theorem, show that when $n \ge 2$,

$$a_n = 2 + \sum_{r=2}^n \frac{1}{r!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \cdots \left(1 - \frac{r-1}{n} \right).$$

Hence, show that $a_{n+1} \ge a_n$ for $n \ge 2$.

- (b) By using the inequality in (a) and considering the inequality $\frac{1}{r!} \leq \frac{1}{2^r 1}$, show that when $n \geq 2, a_n \leq 3$.
- (c) Show that $\lim_{n\to\infty} a_n$ exists.