THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010 I/J University Mathematics 2015-2016

Assignment 1

1. Find the following limits.
(a) $\lim _{n \rightarrow \infty} n\left(\sqrt{1+\frac{1}{n}}-\sqrt{1-\frac{1}{n}}\right)$
(b) $\lim _{n \rightarrow \infty} \frac{n \sin \left(e^{n}\right)}{n^{2}+3}$
2. (a) If $\frac{x+4}{x^{2}+3 x+2} \equiv \frac{A}{x+2}+\frac{B}{x+1}$ for some real numbers A and B, find the values of A and B.
(b) By using the result in (a), find $\sum_{k=2}^{\infty}\left(\frac{1}{k-1}-\frac{k+4}{k^{2}+3 k+2}\right)$.

$$
\text { (i.e. } \lim _{n \rightarrow \infty} \sum_{k=2}^{n}\left(\frac{1}{k-1}-\frac{k+4}{k^{2}+3 k+2}\right) \text {) }
$$

3. By using the sandwich theorem, prove that

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}+\cdots+\frac{1}{(2 n)^{2}}\right)=0
$$

4. Let a and b be two positive real numbers and let $\left\{x_{n}\right\}$ be a sequence of positive real numbers such that

$$
0<x_{1}<b \quad \text { and } \quad x_{n+1}=\sqrt{\frac{a b^{2}+x_{n}^{2}}{a+1}} \text { for } n \geq 1
$$

(a) Prove that $\left\{x_{n}\right\}$ is monotonic increasing.
(b) Prove that $\left\{x_{n}\right\}$ converges (i.e. $\lim _{n \rightarrow \infty} x_{n}$ exists) and hence find its limit.
5. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences of positive real numbers such that $0<y_{1} \leq x_{1}$ and for $n=$ $1,2,3, \cdots$

$$
x_{n+1}=\frac{x_{n}+y_{n}}{2} \quad \text { and } \quad y_{n+1}=\frac{2 x_{n} y_{n}}{x_{n}+y_{n}}
$$

(a) Show that $x_{n} \geq y_{n}$ for all natural numbers n.
(b) Prove that $\left\{x_{n}\right\}$ is a monotonic decreasing sequence and $\left\{y_{n}\right\}$ is a monotonic increasing sequence.
(c) Prove that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge and $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}$.
(d) Prove that $x_{n} y_{n}$ is a constant and hence find $\lim _{n \rightarrow \infty} x_{n}$.
6. Let $\left\{a_{n}\right\}$ be a sequence of real numbers defined by $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ for $n=1,2,3, \cdots$.
(a) By using the binomial theorem, show that when $n \geq 2$,

$$
a_{n}=2+\sum_{r=2}^{n} \frac{1}{r!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{r-1}{n}\right) .
$$

Hence, show that $a_{n+1} \geq a_{n}$ for $n \geq 2$.
(b) By using the inequality in (a) and considering the inequality $\frac{1}{r!} \leq \frac{1}{2^{r}-1}$, show that when $n \geq 2, a_{n} \leq 3$.
(c) Show that $\lim _{n \rightarrow \infty} a_{n}$ exists.

